Gerhard-Wilhelm Weber, Ph.D., is a Professor with the Faculty of Engineering Management at Poznan University of Technology, Poznan, Poland. His research is on mathematics, statistics, operational research, data science, machine learning, finance, economics, optimization, optimal control, management, neuro-, bio-, and earth sciences, medicine, logistics, development, cosmology, and generalized space-time research. He is involved in the organization of scientific life internationally. He received a Diploma and Doctorate in Mathematics and Economics/ Business Administration at RWTH Aachen and Habilitation at TU Darmstadt. He replaced Professorships at the University of Cologne, and TU Chemnitz, Germany. He was a Professor in Financial Mathematics and Scientific Computing and Assistant to the Director at the Institute of Applied Mathematics, Middle East Technical University (METU), Ankara, Turkey. He has been a member of five other graduate schools, institutes, and departments at METU. Dr. Weber also has affiliations at the University of Siegen (Germany), Federation University (Ballarat, Australia), University of Aveiro (Portugal), University of North Sumatra (Medan, Indonesia), MalaysiaUniversity of Technology, Chinese University of Hong Kong, KTO Karatay University (Konya, Turkey), Vidyasagar University (Midnapore, India), Mazandaran University of Science and Technology (Babol, Iran), Istinye University (Istanbul, Turkey), and Georgian International Academy of Sciences. He is an Advisor to EURO Conferences for the Association of European OR Societies and the International Federation of OR Societies (IFORS). Professor Weber is an IFORS Fellow, a member of many national OR societies, an honorary chair of some EURO working groups, a subeditor of the IFORS Newsletter, a member of the IFORS Developing Countries Committee and Pacific Optimization Research Activity Group. He has supervised many MSc and Ph.D. students, authored and edited numerous books and articles, and given presentations on diverse areas in theory, methods, and practice. He has been a member of many international journal editorial, special issue, and award boards, participated in numerous research projects, and received various recognitions from students, universities, conferences, and scientific organizations.
This book provides readers with emerging research that explores the theoretical and practical aspects of implementing new and innovative artificial intelligence (AI) techniques for renewable energy systems. The contributions offer broad coverage on economic and promotion policies of renewable energy and energy-efficiency technologies, the emerging fields of neuro-computational models and simulations under uncertainty (such as fuzzy-based computational models and fuzzy trace theory), evolutionary computation, metaheuristics, machine learning applications, advanced optimization, and stochastic models.
This book provides readers with emerging research that explores the theoretical and practical aspects of implementing new and innovative artificial intelligence (AI) techniques for renewable energy systems. The contributions offer broad coverage on economic and promotion policies of renewable energy and energy-efficiency technologies, the emerging fields of neuro-computational models and simulations under uncertainty (such as fuzzy-based computational models and fuzzy trace theory), evolutionary computation, metaheuristics, machine learning applications, advanced optimization, and stochastic models.
This book provides readers with emerging research that explores the theoretical and practical aspects of implementing new and innovative artificial intelligence (AI) techniques for renewable energy systems. The contributions offer broad coverage on economic and promotion policies of renewable energy and energy-efficiency technologies, the emerging fields of neuro-computational models and simulations under uncertainty (such as fuzzy-based computational models and fuzzy trace theory), evolutionary computation, metaheuristics, machine learning applications, advanced optimization, and stochastic models.